PicsArt_05-31-10.50.37.png
PicsArt_05-31-10.50.20.png
Scheme%2520and%2520Figure-DST-ECRA_edite

Publications

(Google scholar citations >1316, h-index = 21, i10 =27)

2019

Nature-commun-2019.jpeg

32. Adult stem cell deficits drive Slc29a3 disorders in mice.

Nat. Commun. 2019, 10, 2943 doi:10.1038/s41467-019-10925-3. (IF = 11.88; SJR: 5.99). Weblink

Nair, S.; Strohecker, A. M.; Persaud, A. K.; Bissa, B.; Muruganandan, S.; McElroy, C.; Pathak, R.K.; Williams, M.; Raj, R.; Kaddoumi, A.; Sparreboom, A.; Beedle, A. M.; Govindarajan, R. (2019)

2018

Biomaterials.jpg

31. A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation.

Biomaterials 2018, 187, 117-129. (IF = 8.80, SJR: 3.11). Weblink

Pathak, R. K.; Basu, U.; Ahmad, A.; Sarkar, S.; Kumar, A.; Surnar, B.; Ansari, S.; Wilczek, K.; Ivan, M. E.; Marples, B.; Kolishetti, N.; Dhar. S.

oncotarget-Rakesh.png

2017

30. SET contributes to the epithelial-mesenchymal transition of pancreatic cancer.

Oncotarget 2017, 8, 67966-67979 (IF = 5.168, SJR: 1.93). Weblink

Mody, H. R.; Hung, S. W.; Naidu, K.; Lee, H.; Gilbert, C. A.; Hoang, T. T.; Pathak, R. K.; Manoharan, R.; Muruganandan, S.; Govindarajan, R.

MCR-Rakesh-1.jpg

29. miR-202 Diminishes TGFβ Receptors and Attenuates TGFβ1-Induced EMT in Pancreatic Cancer.

Mol. Cancer Res., 2017, DOI: 10.1158/1541-7786. MCR-16-0327 (IF = 4.974, SJR: 2.4). Weblink

Mody, H. R.; Hung, S. W.; Pathak, R. K.; Griffin, J.; Cruz-Monserrate, Z.; Govindarajan, R.

MCT-Rakesh.jpg

28. A Prodrug of Two Approved Drugs, Cisplatin and Chlorambucil, for Chemo War Against Cancer.

Mol. Cancer Ther., 2017, 16 (4), 625-636 (IF = 5.57, SJR: 3.22). Weblink

Pathak, R. K.; Wen, R.; Kolishetti, N.; Dhar. S.

2016

Synlett-Rakesh.jpg
Dlaton-Review-Rakesh_edited.jpg
Rakesh-ADDR.gif
chem-Eur-J-Platin-B-Rakesh.jpg
Chemcomm-Akil-Rakesh.jpeg
Supramolecular-Rakesh-2016.jpg

27. Combined Chemo-Anti-Inflammatory Prodrugs and Nanoparticles. 

Synlett, 2016, 27(11): 1607-1612 (IF = 2.32, SJR: 0.91). Weblink

Pathak, R. K.; Dhar. S.

26. The Platin X-series: Activation, targeting and delivery.

Dalton Transaction., 2016, 45 (33), 12992-13004 (IF = 4.17, SJR: 1.4). Weblink

Basu, U.; Banik, B.; Wen, R.; Pathak, R. K.; Dhar. S.

Dlaton-Review-Rakesh-TOC.jpeg

25. Nanotechnology inspired tools for mitochondria dysfunction related diseases.

Adv. Drug Deliv. Rev. 2016, 99 (Part A), 52-69 (IF = 15.04, SJR = 5.2). Weblink

Wen, R.; Banik, B.; Pathak, R. K.; Kumar, A.; Kolishetti, N. and Dhar. S.

24. Unique use of alkylation for chemo-redox activity by a Pt(IV) prodrug.

Chem. Eur. J., 2016, 22 (9), 3029-3036. (IF = 5.77, SJR: 2.32). Weblink

Pathak, R. K.; Dhar. S.

23. New formulation of old aspirin for better delivery.

Chem. Commun., 2016, 52, 140-143 (IF = 6.56, SJR: 2.77). Weblink

Kalathil, A. A.; Kumar, A.; Banik, B.; Ruiter, T. A.; Pathak, R. K.; Dhar. S.

Chemcomm-Akil-Rakesh-TOC.jpeg

22.  Structure of a di-zinc complex of a bis-calix[4]arene conjugate and its sensing of cysteine among the amino acids.

Supramolecular Chemistry 2016, 28, 536-543 (IF = 2.39, SJR: 0.47). Weblink

Mummidivarapu, V.V. S.; Pathak, R. K.; Rao, C. P.

Supramolecular-Rakesh-2016-Toc.jpg

2015

Nanoscale-Rakesh_edited.jpg
JACS-Rakesh.jpg
WIRE-Nanomedicine-Rakesh.jpg
Mitochondria medicine-book chapter.jpeg

21. Evaluation of Nanoparticle Delivered Cisplatin in Beagles.

Nanoscale 2015, 7, 13822-13830 (IF = 7.76, SJR: 2.97). Weblink

Feldhaeusser, B. ‡; Platt, S. R.; Marrache, S. ‡; Kolishetti, N. ‡; Pathak, R. K.; Montgomerya, D. J. Reno, L. R.; Howerthd, E.; Dhar. S.

Nanoscale-Rakesh-Toc.jpeg

20. A nanoparticle cocktail: Temporal release of predefined drug combinations.

J. Am. Chem. Soc., 2015, 137, 8324–8327. (IF = 13.03, SJR: 7.12). Weblink

Pathak, R. K.; Dhar. S.

JACS-TOC.gif

19. Targeted Nanoparticles in Mitochondrial Medicine.

WIREs Nanomed. Nanobiotechnol., 2015, 7, 315–329 (IF = 4.1, SJR: 1.45). Weblink

Pathak, R. K.; Kolishetti, N.; Dhar. S.

18. Formulation and optimization of mitochondria-targeted polymeric nanoparticles.

Mitochondrial Medicine, Methods in Mol. Bio.; Springer, New York, 2015, Vol 1265, 103-12. (IF = 1.29, SJR in Chemistry: 0.55)

Marrache, S.; Pathak, R. K.; and Dhar, S.

2014

Angew-Chem-Rakesh.gif
ACS-Chem-Bio.jpg

17. The prodrug Platin-A: Simultaneous release of cisplatin and aspirin

Angew. Chem. Int. Ed., 2014, 53, 1963-1967 (IF = 11.70, SJR in Chemistry: 6.23). Weblink

Pathak, R. K., Marrache, S., Choi, J. H., Berding, T. B. and Dhar, S.

Angew-Chem-Rakesh-TOC.jpg

16. Mito-DCA: A mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate

ACS Chem. Biol., 2014, 9, 1178-1187 (IF = 5.09, SJR: 2.86). Weblink

Pathak, R. K.; Marrache, S.; Harn, D. A. and Dhar, S.

ACS-Chem-Bio-TOC.gif
chem-e-j-SPAAC_edited.png
PNAS-Rakesh.jpg

15. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

Chem. Eur. J., 2014, 20, 6861-6865 (IF = 5.77, SJR = 2.32). Weblink

Pathak, R. K.; McNitt, C.; Popik, V. V. and Dhar, S.

chem-e-j-SPAAC-TOC.jpg

14. Detouring of Cisplatin to Access Mitochondrial Genome for Overcoming Resistance.

Proc. Natl. Acad. Sci. USA, 2014, 111, 10444-10449 (IF = 9.42, SJR: 6.88). Weblink

Marrache, S. ‡; Pathak, R. K. ‡; Dhar, S. (‡ Equal contribution)

Supramolecular-Rakesh-2014.jpg

13. A fluorescent di-zinc(II) complex of bis-calix[4]arene conjugate as chemosensing-ensemble for the selective recognition of ATP.

Supramolecular Chemistry., 2014, 26, 538-546 (IF = 2.39, SJR: 0.47). Weblink

Mummidivarapu, V.V. S.; Pathak, R. K.; Hinge, V. K.; Dessingou, J.; Rao, C. P.

2013

CMC-Rakesh.gif

12. Nanocarriers for tracking and treating diseases.

Curr. Med. Chem. 2013, 20, 3500-3514 (IF = 3.09, SJR: 0.84)Weblink

Marrache, S. ‡; Pathak, R. K. ‡; Darley, K. L. ‡; Choi, J. H.; Zaver, D.; Kolishetti, N.; Dhar. S. ‡ Equal contribution.

Anal-Chem-2013-Fe-sensor-1.jpg

11. Quinoline driven fluorescence turn-on 1,3-di-calix[4]arene conjugate based receptor to discriminate Fe3+ from Fe2+.

Anal. Chem., 2013, 85, 7, 3707–3714 (IF = 5.88, SJR: 2.37). Weblink

Pathak, R. K.; Dessingou, J.; Hinge, V. K.; Rao, C. P.

Anal-Chem-2013-Fe-sensor.gif

2012

Inorg-Chem-Rakesh.jpg
Dalton-Rakesh-CPR-22.jpeg
Anal-Chem-23.jpg
Anal-Chem-24.jpg
Analyst-26-.jpeg
Anal-Chem-26-Multi.jpg
Chem-E-J-27-Calix-thiol_edited.png
JOC-28.jpg

10. Imino-phenolic-pyridyl conjugates of calix[4]arene (L1 and L2) as primary fluorescence switch on sensors for Zn2+ in solution and in HeLa cells, and the recognition of pyrophosphate and ATP by [ZnL2].

Inorg. Chem. 2012, 51, 4994−5005 (IF = 4.82, SJR: 1.87). Weblink

Pathak, R. K.; Hinge, V. K.; Rai, A.; Panda, D.; Rao, C. P.

Inorg-Chem-Rakesh-TOC.gif

9. Ratiometric fluorescence off-on-off sensor for Cu2+ in aqueous buffer by a lower rim triazole-linked benzimidazole conjugate of calix[4]arene.

Dalton Trans., 2012, 41, 10652-10660 (IF = 4.17, SJR: 1.4). Weblink

Pathak, R. K.; Hinge, V. K.; Mondal, P.; Rao, C. P.

Dalton-Rakesh-CPR.jpeg

8. Pyrophosphate Sensing by a Fluorescent Zn2+ Bound Triazole Linked Imino-Thiophenyl Conjugate of Calix[4]arene in HEPES Buffer Medium: Spectroscopy, Microscopy, and Cellular Studies.

Anal. Chem., 2012, 84, 5117−5123 (IF = 5.88, SJR: 2.37). Weblink

Pathak, R. K.; Tabbasum, K.; Rai, A.; Panda, D.; Rao, C. P

Anal-Chem-23-TOC.gif

7. Cd2+ complex of triazole-based calix[4]arene conjugate as selective fluorescent chemo-sensor for Cys.

Anal. Chem., 2012,  84, 6907-6913 (IF = 5.88, SJR: 2.37). Weblink

Pathak, R. K.; Hinge, V. K.; Mahesh, K.; Rai, A.; Panda, D.; Rao, C. P.

Anal-Chem-24-TOC.gif

6. A Zn2+ specific triazole-based calix[4]arene conjugate (L) as fluorescence sensor for histidine and cysteine in HEPES buffer milieu.

Analyst., 2012, 137, 4069-4075 (IF = 4.03, SJR: 1.3). Weblink 

Pathak, R. K.; Tabbasum, K.; Rai, A.; Panda, D.; Rao, C. P.

Analyst-26.jpeg

5. Multiple sensor array of Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ complexes of a triazole-linked imino-phenol based calix[4]arene conjugate for the selective recognition of Asp, Glu, Cys and His.

Anal. Chem., 2012, 84, 8294-8300 (IF = 5.88, SJR: 2.37). Weblink

Pathak, R. K.; Dessingou, J. Rao, C. P.

Anal-Chem-26-Multi-sensor.gif

4. Selective recognition of cysteine in its free and protein-bound states by the Zn2+ complex of triazole-based calix[4]arene conjugate.

Chem. Eur. J., 2011, 17, 13999 – 140000 (IF = 5.77, SJR = 2.32). Weblink

Pathak, R. K.; Tabbasum, K.; Hinge, V. K. Rao, C. P.

Chem-E-J-27-Calix-thiol-TOC_edited.png

3. Triazole-linked-thiophene conjugate of calix[4]arene: Its selective recognition of Zn2+ and as biomimetic model in supporting the events of the metal detoxification and oxidative stress involving metallothionein

J. Org. Chem. 2011, 76, 10039−10049 (IF = 4.78, SJR: 2.1). Weblink

Pathak, R. K.; Hinge, V. K.; Milon, M.; Rao, C. P.

JOC-TOC-28_edited.png

2010

Chemcomm-Rakesh.jpeg

2. A lower rim triazole linked calix[4]arene conjugate as a fluorescence switch on sensor for Zn2+ in blood serum milieu

Chem. Commun., 2010, 46, 4345-4347 (IF = 6.56, SJR: 2.77). Weblink

Pathak, R. K.; Dikundwar, A. G.; Guru Row, T. N.; Rao, C. P.

Chemcomm-Rakesh-TOC_edited.jpg

2009

Tet-Lett-30_edited.png

1. Selective recognition of Zn2+ by salicylaldimine appended triazole linked di-derivatives of calix[4]arene: Role of terminal –CH2OH moieties in conjunction with imine in the recognition Tetrahedron Lett., 2009, 50, 2730-2734 (IF = 2.34, SJR: 0.78). Weblink

Pathak, R. K.; Ibrahim, S. M.; Rao, C. P.

Tet-Lett-30-TOC_edited.jpg